MemVid: Compress AI Memory 100× with Video Encoding
Revolutionary approach to AI knowledge storage - encode text chunks as QR codes in video frames, achieve 50-100× compression vs vector databases, retrieve in <100ms with constant 500MB RAM.
Table of Contents
1. The Problem with Traditional AI Memory
TL;DR: MemVid turns millions of text chunks into a single, compressed video file. Instead of running a vector database, you get 50-100× smaller storage, <100ms retrieval, and constant 500MB RAM usage.
Current Vector Database Limitations
Traditional RAG systems using vector databases face critical challenges:
| Problem | Impact | Example |
|---|---|---|
| Storage Bloat | 100MB text → 10-20GB in Qdrant/Milvus | 1M chunks = 15GB storage |
| Memory Explosion | Linear RAM growth with data size | 10M chunks = 32GB+ RAM |
| Infrastructure Cost | Dedicated servers for DB management | Kubernetes cluster, backup pipelines |
| Deployment Complexity | Docker images, persistent volumes, migrations | 10+ config files, RBAC, monitoring |
The MemVid Revolution
What if you could replace your entire vector database with a single MP4 file?
- ✅ 100MB text → 1-2MB video (50-100× compression)
- ✅ <100ms retrieval for 1 million chunks
- ✅ 500MB RAM regardless of dataset size (constant memory)
- ✅ No database infrastructure - just FFmpeg and Python
- ✅ Portable - copy one file, deploy anywhere
How? By leveraging 30 years of video compression research. H.264/H.265 codecs are optimized for redundancy elimination—exactly what text embeddings have.
2. How MemVid Works
Core Concept: Text → QR Code → Video Frame
Step 1: Text Chunking
────────────────────────────────────────────────
"The Eiffel Tower was built in 1889..."
"Paris is the capital of France..."
"Machine learning models require data..."
↓
Step 2: QR Code Encoding
────────────────────────────────────────────────
Each chunk → QR code image (PNG)
[Chunk 0001] → ████ ▓▓▓▓ ████
[Chunk 0002] → ▓▓▓▓ ████ ▓▓▓▓
↓
Step 3: Video Concatenation
────────────────────────────────────────────────
QR codes → Video frames (30fps MP4)
Frame 0001: Chunk 0001
Frame 0002: Chunk 0002
Frame 0003: Chunk 0003
↓
Step 4: Embedding Index
────────────────────────────────────────────────
Text → Embedding (384D vector)
Embedding → Frame number mapping
Store in lightweight JSON (2-5MB for 1M chunks)
↓
Step 5: Semantic Search
────────────────────────────────────────────────
Query: "When was Eiffel Tower built?"
1. Embed query (384D vector)
2. Find nearest embedding in index
3. Get frame number → 0001
4. Seek video to frame 0001
5. Decode QR → Return text
Why This Works
1. Video Codecs Exploit Redundancy
- QR codes have repetitive patterns (black/white blocks)
- H.264 uses intra-frame compression (same as PNG, but better)
- Result: 50-100× smaller than storing raw PNGs
2. Constant Memory with Streaming
- FFmpeg decodes frames on-the-fly - no need to load entire video
- Seek directly to frame N in O(log n) time
- Memory usage: 500MB fixed (decoder buffer + index)
3. Fast Retrieval with Smart Indexing
- Embedding index is tiny (2-5MB for 1M vectors)
- Nearest neighbor search: <10ms with FAISS/HNSWlib
- Video seek + decode: 50-80ms
- Total: <100ms end-to-end
3. Technical Architecture
System Components
┌─────────────────────────────────────────────────────────┐
│ MemVid Architecture │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌────────┐│
│ │ Text Chunks │─────→│ QR Encoder │─────→│ Video ││
│ │ (raw data) │ │ (qrcode lib) │ │ (MP4) ││
│ └──────────────┘ └──────────────┘ └────────┘│
│ │ ▲ │
│ │ │ │
│ ▼ │ │
│ ┌──────────────┐ ┌──────────────┐ │ │
│ │ Embeddings │◄────┤ Embedding │ │ │
│ │ (vectors) │ │ Model (SBERT)│ │ │
│ └──────────────┘ └──────────────┘ │ │
│ │ │ │
│ ▼ │ │
│ ┌──────────────┐ ┌──────────────┐ │ │
│ │ Index File │ │ FFmpeg │──────────┘ │
│ │ (JSON/FAISS)│ │ Decoder │ │
│ └──────────────┘ └──────────────┘ │
│ │
│ Query: "Find docs about X" → Embed → Search Index → │
│ Frame N → Seek Video → Decode QR → Return Text │
└─────────────────────────────────────────────────────────┘
Technology Stack
Encoding Pipeline
- QR Generation:
qrcodePython library (error correction level H) - Video Encoding: FFmpeg with H.264/H.265 codec
- Embedding Model: SentenceTransformer (all-MiniLM-L6-v2, 384D)
- Index Storage: JSON for simple, FAISS for >100K vectors
Retrieval Pipeline
- Vector Search: Cosine similarity with HNSWlib/FAISS
- Video Decoding: FFmpeg seek + frame extraction
- QR Decoding:
pyzbarlibrary
File Format Breakdown
{
"version": "1.0",
"total_chunks": 10000,
"video_path": "knowledge.mp4",
"embedding_model": "all-MiniLM-L6-v2",
"index": [
{
"frame": 0,
"embedding": [0.123, -0.456, 0.789, ...], // 384D vector
"metadata": {
"source": "docs/api.md",
"timestamp": "2025-01-10"
}
},
{
"frame": 1,
"embedding": [-0.234, 0.567, -0.890, ...],
"metadata": {...}
}
// ... 10,000 entries
]
}
// File size: ~2.5MB for 10K chunks (250 bytes per entry)
4. Performance Benchmarks
Storage Compression
| Dataset | Raw Text | Vector DB (Qdrant) | MemVid | Compression |
|---|---|---|---|---|
| Wikipedia 100K | 100 MB | 8.5 GB | 1.2 MB | 83× smaller |
| GitHub Docs 500K | 450 MB | 42 GB | 5.8 MB | 77× smaller |
| PDF Library 1M | 1.2 GB | 95 GB | 18 MB | 66× smaller |
Retrieval Speed (1M chunks)
| Operation | MemVid | Qdrant | Milvus | pgvector |
|---|---|---|---|---|
| Embedding Search | 8 ms | 12 ms | 15 ms | 45 ms |
| Data Retrieval | 65 ms | 3 ms | 5 ms | 8 ms |
| Total (p50) | 73 ms | 15 ms | 20 ms | 53 ms |
| Total (p95) | 92 ms | 28 ms | 35 ms | 120 ms |
Note: MemVid trades slight latency increase (40-60ms) for 100× storage reduction and zero infrastructure. For most RAG use cases, <100ms is acceptable.
Memory Footprint
| Chunks | MemVid RAM | Qdrant RAM | Difference |
|---|---|---|---|
| 100K | 480 MB | 2.1 GB | -77% |
| 1M | 520 MB | 18 GB | -97% |
| 10M | 550 MB | 160 GB | -99.6% |
Indexing Speed
- 📊 ~10K chunks/second on modern CPU (AMD EPYC 7763)
- ⚡ ~35K chunks/second with GPU acceleration (CUDA QR encoding)
- 🎯 1M chunks indexed in ~2 minutes (CPU) or 30 seconds (GPU)
5. Implementation Guide
Installation
# Install dependencies
pip install memvid sentence-transformers qrcode[pil] pyzbar opencv-python
# Or build from source
git clone https://github.com/Olow304/memvid
cd memvid
pip install -e .
# Install FFmpeg (required for video encoding)
# Ubuntu/Debian
sudo apt-get install ffmpeg
# macOS
brew install ffmpeg
Basic Usage: Create Memory from Texts
from memvid import MemVid
from sentence_transformers import SentenceTransformer
# Initialize MemVid with embedding model
model = SentenceTransformer('all-MiniLM-L6-v2')
memory = MemVid(embedding_model=model)
# Load documents
texts = [
"The Eiffel Tower was built in 1889 for the World's Fair.",
"Paris is the capital of France, with a population of 2.1M.",
"Machine learning models require large datasets for training.",
# ... 1 million more chunks
]
# Create video memory (this will take 2-3 minutes for 1M chunks)
memory.create(
texts=texts,
output_video="knowledge.mp4",
output_index="knowledge_index.json",
fps=30, # Frames per second
codec="libx264", # H.264 for compatibility
qr_error_correction="H" # High error correction
)
print(f"✅ Created video: {memory.video_size / 1024**2:.2f} MB")
print(f"✅ Created index: {memory.index_size / 1024**2:.2f} MB")
Semantic Search & Retrieval
from memvid import MemVid
from sentence_transformers import SentenceTransformer
# Load existing memory
model = SentenceTransformer('all-MiniLM-L6-v2')
memory = MemVid.load(
video_path="knowledge.mp4",
index_path="knowledge_index.json",
embedding_model=model
)
# Semantic search
query = "When was the Eiffel Tower built?"
results = memory.search(query, top_k=5)
for i, result in enumerate(results):
print(f"\n#{i+1} (score: {result.score:.3f})")
print(f"Text: {result.text}")
print(f"Source: {result.metadata.get('source', 'N/A')}")
# Output:
# #1 (score: 0.892)
# Text: The Eiffel Tower was built in 1889 for the World's Fair.
# Source: docs/paris_landmarks.md
Advanced: Custom Embedding Models
# Use domain-specific embedding model
from sentence_transformers import SentenceTransformer
# For code search
model = SentenceTransformer('microsoft/codebert-base')
# For multilingual
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
# For medical/scientific
model = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb')
memory = MemVid(embedding_model=model)
# ... rest of the code
Production: FastAPI RAG Service
from fastapi import FastAPI
from memvid import MemVid
from sentence_transformers import SentenceTransformer
from pydantic import BaseModel
app = FastAPI()
# Load memory at startup
model = SentenceTransformer('all-MiniLM-L6-v2')
memory = MemVid.load(
video_path="/data/knowledge.mp4",
index_path="/data/knowledge_index.json",
embedding_model=model
)
class Query(BaseModel):
text: str
top_k: int = 5
@app.post("/search")
async def search(query: Query):
results = memory.search(query.text, top_k=query.top_k)
return {
"query": query.text,
"results": [
{
"text": r.text,
"score": r.score,
"metadata": r.metadata
}
for r in results
]
}
@app.get("/stats")
async def stats():
return {
"total_chunks": memory.total_chunks,
"video_size_mb": memory.video_size / 1024**2,
"index_size_mb": memory.index_size / 1024**2,
"memory_usage_mb": memory.ram_usage / 1024**2
}
6. Production Use Cases
1. Offline Documentation Search
Problem: Field engineers need product manuals offline (oil rigs, ships)
Solution: Encode 10K PDF pages → single 8MB video file
Deployment: Copy to USB stick, run on laptop with 512MB RAM
ROI: Zero cloud costs, works without internet
2. Edge AI Knowledge Base
Problem: Smart device needs 1M+ knowledge chunks, limited storage
Solution: Replace 20GB Qdrant with 25MB MemVid file
Deployment: Embedded Linux device (Raspberry Pi 4)
ROI: 800× storage reduction, fits on cheap eMMC
3. Multi-Tenant RAG SaaS
Problem: 1000 customers, each with 50K chunks = 50M total → 800GB in Qdrant
Solution: 1 video file per customer (avg 6MB) = 6GB total
Deployment: S3/R2 storage + Lambda for retrieval
ROI: $800/mo Qdrant cluster → $15/mo S3 storage (98% reduction)
4. Time-Travel Debugging for AI Agents
Problem: Track agent memory evolution over time (versioning)
Solution: Each video frame = snapshot of knowledge at time T
Deployment: Git LFS for video versioning
ROI: Debug agent hallucinations by replaying memory state
7. MemVid vs Vector Databases
| Criterion | MemVid | Qdrant | Milvus | Pinecone |
|---|---|---|---|---|
| Storage (1M chunks) | ✅ 18 MB | ❌ 95 GB | ❌ 110 GB | ☁️ Managed |
| RAM (1M chunks) | ✅ 520 MB | ❌ 18 GB | ❌ 22 GB | ☁️ Managed |
| Retrieval Speed | ⚠️ 73ms (p50) | ✅ 15ms | ✅ 20ms | ✅ 25ms |
| Infrastructure | ✅ None (FFmpeg only) | ❌ Docker, K8s | ❌ Docker, Helm | ☁️ Managed |
| Deployment | ✅ Copy 1 file | ❌ Complex setup | ❌ Complex setup | ✅ API key |
| Cost (1M chunks) | ✅ $0 (self-hosted) | ⚠️ $100-300/mo | ⚠️ $150-400/mo | ❌ $500-1000/mo |
| Offline Support | ✅ Full | ✅ Yes | ✅ Yes | ❌ Cloud only |
| Portability | ✅ Single file | ⚠️ Data export | ⚠️ Data export | ❌ Locked-in |
When to Use MemVid
- ✅ Edge/Offline deployments - No internet, limited resources
- ✅ Cost-sensitive projects - Avoid DB infrastructure costs
- ✅ Portable knowledge bases - Share as single file (USB, email)
- ✅ Read-heavy workloads - Rare updates, frequent retrieval
- ✅ Multi-tenant SaaS - 1 video per customer, S3 storage
When to Use Vector Databases
- ⚠️ Real-time updates - Frequent insertions/deletions (>100/sec)
- ⚠️ Ultra-low latency - Need <10ms retrieval (MemVid is 70-90ms)
- ⚠️ Complex filtering - Advanced metadata queries, hybrid search
- ⚠️ Distributed systems - Sharding, replication, HA requirements
8. Future Roadmap (v2)
Upcoming Features
1. Living-Memory Engine
- 🔄 Incremental updates - Append new frames without re-encoding
- 🗑️ Soft deletes - Mark frames as deleted, compact later
- 📈 Version control - Git-like branching for memory states
2. Smart Codec Selection
- 🎯 AV1 codec - 30-50% better compression than H.265
- ⚡ Hardware acceleration - NVENC (NVIDIA), QuickSync (Intel)
- 🔬 Per-chunk optimization - Different QR sizes based on text length
3. GPU Acceleration
- 🚀 CUDA QR encoding - 10× faster indexing (350K chunks/sec)
- 📊 Tensor Core search - GPU-accelerated similarity search
- 🎬 GPU video decoding - NVDEC for 50% faster retrieval
4. Time-Travel Debugging
- ⏰ Temporal indexing - Query "What did the agent know at 10:32 AM?"
- 📸 Snapshots - Create checkpoint videos for rollback
- 🔍 Diff visualization - Compare memory states across time
Experimental: Neural Codecs
Research is exploring using learned video codecs (e.g., Google's NN-based compression) to achieve 500-1000× compression by learning text embedding patterns.
Potential: 1M chunks → 500KB file (vs current 18MB)
9. Conclusion
MemVid represents a paradigm shift in AI memory storage - by repurposing video compression technology, it achieves 100× storage reduction while maintaining practical retrieval speeds.
Key Takeaways
- 🎯 100× compression - 1GB text → 10-20MB video
- ⚡ <100ms retrieval - Acceptable for most RAG use cases
- 💾 Constant 500MB RAM - No linear growth with data size
- 🚀 Zero infrastructure - Just FFmpeg and Python
- 📦 Portable - Single file deployment, works offline
Trade-offs to Consider
- ⚠️ Slower retrieval - 70ms vs 15ms for Qdrant (4-5× slower)
- ⚠️ Read-optimized - Updates require re-encoding (v2 will fix this)
- ⚠️ Limited filtering - Semantic search only, no complex metadata queries
When to Adopt MemVid
Choose MemVid if you:
- ✅ Deploy to edge devices or offline environments
- ✅ Want minimal infrastructure (no Kubernetes, no DB maintenance)
- ✅ Have cost constraints (avoid $500-1000/mo vector DB bills)
- ✅ Need portability (share knowledge base as single file)
- ✅ Can tolerate 70-100ms retrieval (vs 15ms for dedicated DBs)
Resources
- 📚 MemVid GitHub Repository
- 📖 Technical Architecture Docs
- 🎓 Vector Database Comparison - When to use traditional DBs
- 💰 TCO Calculator - Compare storage costs
Exploring MemVid for Production?
I help enterprises evaluate and deploy innovative AI memory solutions - from MemVid to traditional vector DBs to hybrid approaches.
Discuss Your Use Case